PgVector for AI Memory in Production Applications

PgVector is a PostgreSQL extension designed to enhance memory in AI applications by storing and querying vector embeddings. This enables large language models (LLMs) to retrieve accurate information, personalize responses, and reduce hallucinations. PgVector’s efficient indexing and simple integration provide a reliable foundation for AI memory, making it essential for developers building AI products.

Introduction

As AI moves from experimentation into real products, one challenge appears over and over again: memory. Large language models (LLMs) are incredibly capable, but they can’t store long-term knowledge about users or applications out-of-the-box. They respond only to what they see in the prompt and once the prompt ends, the memory disappears.

This is where vector databases and especially PgVector step in.

PgVector is a PostgreSQL extension that adds first-class vector similarity search to a database you probably already use. With its rise in popularity especially in production AI systems it has become one of the simplest and most powerful ways to build AI memory.

This post is a deep dive into PgVector, how it works, why it matters, and how to implement it properly for real LLM-powered features.


What Is PgVector?

PgVector is an open-source PostgreSQL extension that adds support for storing and querying vector data types. These vectors represent high‑dimensional numerical representations embeddings generated from AI models.

Examples:

  • A sentence embedding from OpenAI might be a vector of 1,536 floating‑point numbers.
  • An image embedding from CLIP might be 512 or 768 numbers.
  • A user profile embedding might be custom‑generated from your own model.

PgVector lets you:

  • Store these vectors
  • Index them efficiently
  • Query them using similarity search (cosine, inner product, Euclidean)

This enables your LLM applications to:

  • Retrieve knowledge
  • Add persistent memory
  • Reduce hallucinations
  • Add personalization or context
  • Build recommendation engines

And all of that without adding a new complex piece of infrastructure because it works inside PostgreSQL.


How PgVector Works

At its core, PgVector introduces a new column type:

vector(1536)

You decide the dimension based on your embedding model. PgVector then stores the vector and allows efficient search using:

  • Cosine distance (1 – cosine similarity)
  • Inner product
  • Euclidean (L2)

Similarity Search

Similarity search means: given an embedding vector, find the stored vectors that are closest to it.

This is crucial for LLM memory.

Instead of asking the model to “remember” everything or hallucinating answers, we retrieve the most relevant facts, messages, documents, or prior interactions before the LLM generates a response.

Indexing

PgVector supports two main index types:

  • IVFFlat (fast, approximate search – great for production)
  • HNSW (hierarchical – even faster for large datasets)

Example index creation:

CREATE INDEX ON memories USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);


Using PgVector With Embeddings

Step 1: Generate Embeddings

You generate embeddings from any model:

  • OpenAI Embeddings
  • Azure
  • HuggingFace models
  • Cohere
  • Llama.cpp
  • Custom fine‑tuned transformers

Example (OpenAI):

POST https://api.openai.com/v1/embeddings

{

“model”: “text-embedding-3-large”,

“input”: “Hello world”

}

This returns a vector like:

[0.0213, -0.0045, 0.9983, …]

Step 2: Store Embeddings in PostgreSQL

A table for memory might look like:

CREATE TABLE memory (

id SERIAL PRIMARY KEY,

content TEXT NOT NULL,

embedding vector(1536),

metadata JSONB,

created_at TIMESTAMP DEFAULT NOW()

);

Insert data:

INSERT INTO memory (content, embedding)

VALUES (

‘User likes Japanese and Mexican cuisine’,

‘[0.234, -0.998, …]’

);

Step 3: Query Similar Records

SELECT content, (embedding <=> ‘[0.23, -0.99, …]’) AS distance

FROM memory

ORDER BY embedding <=> ‘[0.23, -0.99, …]’

LIMIT 5;

This returns the top 5 most relevant memory snippets and those will be added to the prompt context.


Storing Values for AI Memory

What You Store Depends on Your Application

You can store:

  • Chat history messages
  • User preferences
  • Past actions
  • Product details
  • Documents
  • Errors and solutions
  • Knowledge base articles
  • User profiles

Recommended Structure

A flexible structure:

{

“type”: “preference”,

“user_id”: 42,

“source”: “chat”,

“topic”: “food”,

“tags”: [“japanese”, “mexican”]

}

This gives you the ability to:

  • Filter search by metadata
  • Separate memories per user
  • Restrict context retrieval by type

Temporal Decay (Optional)

You can implement ranking adjustments:

  • Recent memories score higher
  • Irrelevant memories score lower
  • Outdated memories auto‑expire

This creates human‑like memory behavior.


Reducing Hallucinations With PgVector

LLMs hallucinate when they lack context.

Most hallucinations are caused by missing information, not by model failure.

PgVector solves this by ensuring the model always receives:

  • The top relevant facts
  • Accurate summaries
  • Verified data

Retrieval-Augmented Generation (RAG)

You transform a prompt from:

Without RAG:

“Tell me about Ivan’s garden in Canada.”

With RAG:

“Tell me about Ivan’s garden in Canada. Here are relevant facts from memory: The garden is 20m². – Located in Canada. – Used for planting vegetables.”

The model no longer needs to guess.

Why This Reduces Hallucination

Because the model:

  • Is not guessing user data
  • Only completes based on retrieved facts
  • Gets guardrails through data-driven knowledge
  • Becomes deterministic

PgVector acts like a mental database for the AI.


Adding PgVector to a Production App

Here’s the blueprint.

1. Install the extension

CREATE EXTENSION IF NOT EXISTS vector;

2. Create your memory table

Use the structure that fits your domain.

3. Create an index

CREATE INDEX memory_embedding_idx
ON memory USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);

4. Create a Memory Service

Your backend service should:

  • Accept content
  • Generate embeddings
  • Store them with metadata

And another service should:

  • Take an embedding
  • Query top-N matches
  • Return the context

5. Use RAG in your LLM pipeline

Every LLM call becomes:

  1. Embed the question
  2. Retrieve relevant memory
  3. Construct prompt
  4. Call the LLM
  5. Store new memories (if needed)

6. Add Guardrails

Production memory systems need:

  • Permission control (per user)
  • Expiration rules
  • Filters (e.g., exclude private data)
  • Maximum memory size

7. Add Analytics

Track:

  • Hit rate (how often memory is used)
  • Relevance quality
  • Retrieval time

Common Pitfalls and How to Avoid Them

❌ Storing whole conversation transcripts

This leads to massive token usage. Instead, store summaries.

❌ Retrieving too many memories

Keep context small. 3–10 items is ideal.

❌ Wrong distance metric

Most embedding models work best with cosine similarity.

❌ Using RAG without metadata filters

You don’t want another user’s memory leaking into the context.

❌ No indexing

Without IVFFlat/HNSW, retrieval becomes extremely slow.


When Should You Use PgVector?

Use it if you:

  • Already use PostgreSQL
  • Want simple deployment
  • Want memory that scales to millions of rows
  • Need reliability and ACID guarantees
  • Want to avoid new infrastructure like Pinecone, Weaviate, or Milvus

Do NOT use it if you:

  • Need billion‑scale vector search
  • Require ultra‑low latency for real‑time gaming or streaming
  • Need dynamic sharding across many nodes

But for 95% of AI apps, PgVector is perfect.


Conclusion

PgVector is the bridge between normal production data and the emerging world of AI memory. For developers building real applications chatbots, agents, assistants, search engines, personalization engines it offers the most convenient and stable foundation.

You get:

  • Easy deployment
  • Reliable storage
  • Fast similarity search
  • A complete memory layer for AI

This turns your LLM features from fragile experiments into solid, predictable production systems.

If you’re building AI products in 2025, PgVector isn’t “nice to have” it’s a core architectural component.

The AI Detox Movement: Why Engineers Are Taking Back Their Code

In 2025, AI tools transformed coding but led developers to struggle with debugging and understanding their code. This sparked the concept of “AI detox,” a period where developers intentionally stop using AI to regain coding intuition and problem-solving skills. A structured detox can improve comprehension, debugging, and creativity, fostering a healthier relationship with AI.

The New Reality of Coding in 2025

Over the last year, something remarkable happened in the world of software engineering.

AI coding tools Cursor, GitHub Copilot, Cody, Devin became not just sidekicks, but full collaborators. Autocomplete turned into full functions, boilerplate became one-liners, and codebases that once took weeks to scaffold could now appear in minutes.

It felt like magic.

Developers were shipping faster than ever. Teams were hitting deadlines early. Startups were bragging about “AI-assisted velocity.”

But behind that rush of productivity, something else began to emerge a quiet, growing discomfort.


The Moment the Magic Fades

After months of coding with AI, many developers hit the same wall.
They could ship fast, but they couldn’t debug fast.

When production went down, it became painfully clear: they didn’t truly understand the codebase they were maintaining.

A backend engineer told me bluntly:

“Cursor wrote the service architecture. I just glued things together. When it broke, I realized I had no idea how it even worked.”

AI wasn’t writing bad code it was writing opaque code.
Readable but not intuitive. Efficient but alien.

This is how the term AI detox started spreading in engineering circles developers deliberately turning AI off to reconnect with the craft they’d begun to lose touch with.


What Is an AI Detox?

An AI detox is a deliberate break from code generation tools like Copilot, ChatGPT, or Cursor to rebuild your programming intuition, mental sharpness, and problem-solving confidence.

It doesn’t mean rejecting AI altogether.
It’s about recalibrating your relationship with it.

Just as a fitness enthusiast might cycle off supplements to let their body reset, engineers are cycling off AI to let their brain do the heavy lifting again.


Why AI Detox Matters

The longer you outsource cognitive effort to AI, the more your engineering instincts fade.
Here’s what AI-heavy coders have reported after several months of nonstop use:

  • Reduced understanding of code structure and design choices.
  • Slower debugging, especially in unfamiliar parts of the codebase.
  • Weaker recall of language and framework features.
  • Overreliance on generated snippets that “just work” without deeper understanding.
  • Loss of flow, because coding became about prompting rather than creating.

You might still be productive but you’re no longer learning.
You’re maintaining an illusion of mastery.


The Benefits of an AI Detox

After even a short AI-free period, developers often notice a profound change in how they think and code:

  • Deeper comprehension: You start to see the architecture again.
  • Better debugging: You can trace logic without guesswork.
  • Sharper recall: Syntax, libraries, and idioms return to muscle memory.
  • Creative problem solving: You find better solutions instead of the first thing AI offers.
  • Reconnection with craftsmanship: You take pride in code that reflects your thought process.

As one engineer put it:

“After a week without Cursor, I remembered how satisfying it is to actually solve something myself.”


How to Plan Your AI Detox (Step-by-Step Guide)

You don’t need to quit cold turkey forever.
A structured plan helps you recoup your skills while keeping your work flowing.

Here’s how to do it effectively:


Step 1: Define Your Motivation

Start by asking:

  • What do I want to regain?
  • Is it confidence? Speed? Understanding?
  • Do I want to rebuild my debugging skills or architectural sense?

Write it down. Clarity gives your detox purpose and prevents you from quitting halfway.


Step 2: Choose Your Detox Duration

Different goals require different lengths:

Detox LevelDurationBest For
Mini-detox3 daysA quick reset and self-check
Weekly detox1 full weekRebuilding confidence and recall
Extended detox2–4 weeksDeep retraining of fundamentals

If you’re working on a production project, start with a hybrid approach:
AI-free mornings, AI-assisted afternoons.


Step 3: Set Clear Rules

Be explicit about what’s allowed and what’s not.

Example rules:

✅ Allowed:

  • Using AI for documentation lookups
  • Reading AI explanations for existing code
  • Asking conceptual questions (“How does event sourcing work?”)

❌ Not allowed:

  • Code generation (functions, modules, tests, migrations)
  • AI refactors or architecture design
  • Using AI to debug instead of reasoning it out yourself

The stricter the rule set, the greater the benefit.


Step 4: Pick a Suitable Project

Choose something that forces you to think but won’t jeopardize production deadlines.

Good choices:

  • Refactor an internal service manually.
  • Build a small CLI or API from scratch.
  • Rewrite a module in a different language (e.g., Ruby → Rust).
  • Add integration tests by hand.

Bad choices:

  • Complex greenfield features with high delivery pressure.
  • Anything that will make your manager panic if it takes longer.

The goal is to practice thinking, not to grind deadlines.


Step 5: Journal Your Learning

Keep a daily log of what you discover:

  • What took longer than expected?
  • What concepts surprised you?
  • What patterns do you now see more clearly?
  • Which parts of the language felt rusty?

At the end of the detox, you’ll have a personal reflection guide a snapshot of how your brain reconnected with the craft.


Step 6: Gradually Reintroduce AI (With Boundaries)

After your detox, it’s time to reintroduce AI intentionally.

Here’s how to keep your skills sharp while benefiting from AI assistance:

Use CaseAI Usage
Boilerplate✅ Yes (setup, configs, tests)
Core logic⚠️ Only for brainstorming or reviewing
Debugging✅ For hints, but reason manually first
Architecture✅ As a sounding board, not a decision-maker

You’ll quickly find a balance where AI becomes an amplifier not a crutch.


Example AI-Detox Schedule (4-Week Plan)

Here’s a simple structure to follow:

Week 1 – Awareness

  • Turn off AI for 3 days.
  • Focus on small, isolated tasks.
  • Note moments where you instinctively reach for AI.

Goal: Realize how often you rely on it.


Week 2 – Manual Mastery

  • Full AI-free week.
  • Rebuild a module manually.
  • Write comments before coding.
  • Practice debugging from logs and stack traces.

Goal: Relearn problem-solving depth.


Week 3 – Independent Architecture

  • Design and code a feature without any AI input.
  • Document design decisions manually.
  • Refactor and test it by hand.

Goal: Restore confidence in end-to-end ownership.


Week 4 – Rebalance

  • Reintroduce AI, but only for non-critical parts.
  • Review old AI-generated code and rewrite one section by hand.
  • Evaluate your improvement.

Goal: Reclaim control. Let AI assist, not lead.


Practical Tips to Make It Work

  • Disable AI in your editor: Don’t rely on willpower remove temptation.
  • Pair program with another human: It recreates the reasoning process that AI shortcuts.
  • Keep a “questions log”: Every time you’re tempted to ask AI something, write it down. Research it manually later.
  • Revisit fundamentals: Review algorithms, frameworks, or patterns you haven’t touched in years.
  • Read real code: Open-source repositories are the best detox material real logic, real humans.

The Mindset Behind the Detox

The purpose of an AI detox isn’t to prove you can code without AI.
It’s to remember why you code in the first place.

Good engineering is about understanding, design, trade-offs, and problem-solving.
AI tools are brilliant at generating text but you are the one making decisions.

The best developers I know use AI with intent. They use it to:

  • Eliminate repetition.
  • Accelerate boilerplate.
  • Explore ideas.

But they write, refactor, and debug the hard parts themselves because that’s where mastery lives.


The Future Is Balanced

AI isn’t going away. It’s evolving faster than any tool in tech history.
But if you want to stay valuable as a developer, you need to own your code, not just generate it.

The engineers who thrive over the next decade will be those who:

  • Think independently.
  • Understand systems deeply.
  • Use AI strategically, not passively.
  • Keep their fundamentals alive through intentional detox cycles.

AI is a force multiplier not a replacement for your mind.


So take a week. Turn it off.
Write something from scratch.
Struggle a little. Think a lot.
Reignite the joy of building with your own hands.

When you turn the AI back on, you’ll see it differently not as your replacement, but as your apprentice.

Is AI Slowing Everyone Down?

Over the past year, we’ve all witnessed an AI gold rush. Companies of every size are racing to “adopt AI” before their competitors do, layering chatbots, content tools, and automation into their workflows. But here’s the uncomfortable question: is all of this actually making us more productive, or is AI quietly slowing us down?

A new term from Harvard Business Review “workslop” captures what many of us are starting to see. It refers to the flood of low-quality, AI-generated work products: memos, reports, slide decks, emails, even code snippets. The kind of content that looks polished at first glance, but ultimately adds little value. Instead of clarity, we’re drowning in noise.

The Illusion of Productivity

AI outputs are fast, but speed doesn’t always equal progress. Generative AI makes it effortless to produce content, but that ease has created a different problem: oversupply. We’re seeing more documents, more proposals, more meeting summaries but much of it lacks originality or critical thought.

When employees start using AI as a crutch instead of a tool, the result is extra layers of text that someone else has to review, fix, or ignore. What feels like efficiency often leads to more time spent filtering through workslop. The productivity gains AI promises on paper are, in practice, canceled out by the overhead of sorting the useful from the useless.

Numbers Don’t Lie

The MIT Media Lab recently published a sobering study on AI adoption. After surveying 350 employees, analyzing 300 public AI deployments, and interviewing 150 executives, the conclusion was blunt:

  • Fewer than 1 in 10 AI pilot projects generated meaningful revenue.
  • 95% of organizations reported zero return on their AI investments.

The financial markets noticed. AI stocks dipped after the report landed, signaling that investors are beginning to question whether this hype cycle can sustain itself without real business impact.

Why This Happens

The root cause isn’t AI itself it’s how organizations are deploying it. Instead of rethinking workflows and aligning AI with core business goals, many companies are plugging AI in like a patch. “We need to use AI somewhere, anywhere.” The result is shallow implementations that create surface-level outputs without driving real outcomes.

It’s the same mistake businesses made during earlier tech booms. Tools get adopted because of fear of missing out, not because of a well-defined strategy. And when adoption is guided by FOMO, the outcome is predictable: lots of activity, little progress.

Where AI Can Deliver

Despite the noise, I don’t think AI is doomed to be a corporate distraction. The key is focus. AI shines when it’s applied to specific, high-leverage problems:

  • Automating repetitive, low-value tasks (think: data entry, scheduling, or document classification).
  • Enhancing decision-making with real-time insights from complex data.
  • Accelerating specialized workflows in domains like coding, design, or customer support if humans remain in the loop.

The companies that will win with AI aren’t the ones pumping out endless AI-generated documents. They’re the ones rethinking their processes from the ground up and asking: Where can AI free humans to do what they do best?

The Human Factor

We have to remember: AI isn’t a replacement for judgment, creativity, or strategy. It’s a tool one that can amplify our abilities if used thoughtfully. But when used carelessly, it becomes a distraction that actually slows us down.

The real productivity gains won’t come from delegating everything to AI. They’ll come from combining human strengths with AI’s capacity, cutting through the noise, and resisting the temptation to let machines do our thinking for us.


Final thought: Right now, most companies are stuck in the “workslop” phase of AI adoption. They’re generating more content than ever but producing less clarity and value. The next phase will belong to organizations that stop chasing hype and start asking harder questions: What problem are we actually solving? Where does AI fit into that solution?

Until then, we should be honest with ourselves: AI isn’t always speeding us up. Sometimes, it’s slowing everyone down.